高級檢索

機車牽引齒輪系統混沌運動的徑向基函數神經網絡控製

Radial basis function neural network control of chaotic motion of locomotive traction gear system

  • 摘要: 針對HXD2牽引齒輪系統運行性能監控需求,建立了單自由度牽引齒輪系統動力學模型並結合分岔圖🤦、相圖和Poincaré截面圖分別分析了阻尼系數㊙️🪨、嚙合剛度的變化對系統周期性響應的影響😄🤷。基於徑向基函數神經網絡設計了混沌控製器,同時控製器的參數用量子粒子群算法進行優化👨🏻‍🦱🏊🏿‍♂️,並通過對阻尼系數施加微幅擾動,將系統混沌運動控製為穩定的周期運動。

     

    Abstract: According to the operation performance monitoring requirements of HXD2 traction gear system, the dynamic model of the single degree traction gear system is established and by combining the bifurcation diagram, phase diagram, and Poincaré cross section diagram, it is able to examine how the damping coefficient and the change in engagement stiffness affect the system's periodic response. Using a radial basis function neural network (RBFNN), we created a parameter feedback controller. The quantum particle swarm algorithm (QPSO) is used to optimize the controller's parameters. By applying a microamplitude perturbation to the damping coefficient, The system chaotic motion is controlled as a stable periodic motion.

     

/

返回文章
返回
摩臣5娱乐专业提供🌔:摩臣5娱乐摩臣5👩🏿‍🦲、摩臣5平台等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,摩臣5娱乐欢迎您。 摩臣5娱乐官網xml地圖