高級檢索

基於深度殘差網絡的道路標誌識別模型構建及分析

Road sign recognition model construction and analysis based on deep residual network

  • 摘要: 道路標誌識別是自動駕駛技術的重要依據,自動駕駛技術的高速發展對道路標誌識別提出了更高的要求,對道路標誌的識別具有重要的理論和應用價值✋🏿。簡單分析了道路標誌識別的背景🧑🏽‍🔬,介紹了卷積神經網絡的網絡結構和近年來取得較好識別效果的深度殘差網絡模型(ResNet),並提出了改進的ResNet18網絡模型。使用德國道路標誌數據集進行訓練和測試,並與相關算法進行比較,證明該模型具有較高的識別精度和識別效率。

     

    Abstract: Road sign recognition is an important basis of autonomous driving technology. The rapid development of automatic driving technology has higher requirements for road sign recognition, which has important theoretical and application value. The background of road sign recognition is briefly analyzed, and the network structure of convolutional neural network is introduced, as well as the deep residual network model(ResNet) which has achieved good recognition effect in recent years. An improved ResNet18 network model is proposed, which is trained and tested by using the German road sign data set, and compared with related algorithms. It is proved that the model has higher recognition accuracy and efficiency.

     

/

返回文章
返回
摩臣5娱乐专业提供𓀂:摩臣5娱乐💁🏽‍♂️、摩臣5♢、摩臣5平台等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,摩臣5娱乐欢迎您。 摩臣5娱乐官網xml地圖