高級檢索

LSTM和GRU在城市聲音分類中的應用

Research and Application of LSTM and GRU in Urban Sound Classification

  • 摘要: 不同類型的聲音對城市居民的身心健康質量影響不同👳🏿‍♀️,將城市聲音精準的分類有利於對其進行有效的評價🥷🏼,從而促進對城市聲音的管理。深度學習在語音識別方面已有所應用🧑🏽‍🦳,其中循環神經網絡(RNN)表現最為突出🪑。由於基本RNN存在明顯的梯度消失〽️、網絡損耗大、準確率低等問題🙄,應用改進的RNN對城市背景噪聲進行分類。采用長短期記憶神經網絡(LSTM)和門控循環單元(GRU)神經網絡🤜🏽,構建深度循環神經網絡模型,通過城市記錄的公共數據集UrbanSound8K對搭建的深度神經網絡的準確性進行測試分析👦🏻。模型基於梅爾頻率倒譜系數的基準實現,得出的結果與基本RNN相比有明顯的提升🏌🏿‍♂️。

     

    Abstract: Different types of sounds have different effects on the quality of physical and mental health of urban residents. Accurate classification of urban sounds is conducive to effective evaluation of them, thus promoting the management of urban sounds. Deep learning has been applied in speech recognition, among which the recurrent neural network (RNN) is the most prominent. Due to the obvious gradient disappearance, large network loss and low accuracy of the basic RNN, the improved recurrent neural network was employed to classify the urban background noise. The long short-term memory neural network (LSTM) and the gated recurrent unit (GRU) neural network were used to construct a deep-circulating neural network model. The accuracy of the constructed deep neural network was tested and analyzed by the public data set UrbanSound8K. The model was based on the benchmark of the Mel frequency cepstral coefficient and the results were significantly improved compared with the basic RNN.

     

/

返回文章
返回
摩臣5娱乐专业提供𓀇🧷:摩臣5娱乐🧍🏻‍♀️、摩臣5摩臣5平台等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流🤾🏼‍♂️,摩臣5娱乐欢迎您。 摩臣5娱乐官網xml地圖